“学萃讲坛”秉承学名家风范、萃科技精华的理念,以学术为魂,以育人为本,追求技术创新,提升学术品位,营造浓郁学术氛围,共品科技饕餮盛宴!
报告题目:Two-Dimensional Carbides and Nitrides Expand the Flatlands
报告人:Yury Gogotsi教授
时间:2017年3月15日上午9:30
地点:启航活动中心长江厅
主办单位:科学技术研究院
承办单位:材料科学与化学工程学院
报告人简介:
Yury Gogotsi is a Distinguished University Professor and Trustee Chair of Materials Science and Engineering at Drexel University. He is the founding Director of the A.J. Drexel Nanomaterials Institute and Associate Editor of ACS Nano. From 2016, he is a “1000 Talents Plan” High–Level overseas expert in Jilin University. He works on nanostructured carbons and two-dimensional carbides for energy related and biomedical applications. His work on selective extraction synthesis of carbon and carbide nanomaterials with tunable structure and porosity had a strong impact on the field of capacitive energy storage. He has co-authored 2 books, more than 450 journal papers and obtained more than 50 patents. He has received numerous national and international awards for his research. He was recognized as Highly Cited Researcher by Thomson-Reuters in 2014-2016, and elected a Fellow of AAAS, MRS, ECS, RSC, ACerS and the World Academy of Ceramics.
报告简介:
Two-dimensional (2D) solids – the thinnest materials available to us – offer unique properties and a potential path to device miniaturization. The most famous example is graphene, which is an atomically thin layer of carbon atoms bonded together in-plane with sp2 bonds. In 2011, a new family of 2D solids – transition metal carbides and nitrides (Ti2C, Ti3C2, Nb4C3, Ti4N3, etc.) – was discovered by Drexel University scientists [1]. These 2D solids with a composition Mn+1Xn (M is a transition metal, X is C or N) were labeled “MXenes”. More than 20 different carbides, nitrides and carbonitrides have been reported to date [2-5]. A new sub-family of multi-element ordered MXenes was discovered recently [2]. Structure and properties of numerous MXenes have been predicted by the density functional theory, showing that MXenes can be metallic or semiconducting, depending on their composition and surface termination. Their elastic constants along the basal plane are expected to be higher than that of the binary carbides. Oxygen or OH terminated MXenes are hydrophilic, but electrically conductive. Hydrazine, urea and other polar organic molecules can intercalate MXenes leading to an increase of their c lattice parameter [3]. One of the many potential applications for 2D Ti3C2 is in electrical energy storage devices such as batteries, Li-ion capacitors and supercapacitors [3-5]. Metallic MXenes have a potential for use in electromagnetic interference (EMI) shielding, transparent conducting coatings and many other applications. The reported EMI shielding efficiency values of flexible Ti3C2Txfilms are the highest of any known synthetic materials with similar thickness [6]. Moreover, excellent shielding ability is maintained after adding sodium alginateto create polymer composite films. The 2D structure,combined with high conductivity and good electronic coupling between the layers,is responsible for theextremely high EMI shielding efficiency of MXenes [6].
1.M. Naguib, et al, Advanced Materials, 23 (37), 4207-4331 (2011)
2.B. Anasori, et al, ACS Nano, 9 (10) 9507–9516 (2015)
3.O. Mashtalir, et al, Nature Communication, 4, 1716 (2013)
4.M M. Ghidiu, Nature, 516, 78–81 (2014)
5.B. Anasori, M. R. Lukatskaya, Y. Gogotsi, Nature Reviews Materials, 2, 16098 (2017)
6.F. Shahzad, et al, Science 353, 1137-1140 (2016)